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V.  OPTIMIZATION MODELS 

1.  Introduction. 

This chapter presents optimization models based on the manpower flow 

processes described in previous chapters.  It is not possible or desirable to 

describe the entire range o£ optimization models.  Each organization has its 

own singular features, objectives, and difficulties. There can be no all 

encompassing model that would address the problems of every organization. 

Therefore, this chapter will emphasize modeling tec'.niqucs and the use of 

optimization models in fashioning manpower policy. We stress the role of 

aggregate planning and design problems.  We avoid the operational problems of 

personnel management.  For example, an aggregate university model might identify 

three types of students (graduates, upper division, and lower division) and 

three types of teachers (tenure, non-tenure, and teaching assistants). An 

operational planning model would have a finer breakdown of the student and 

teaching components, and would be concerned with detailed problems of matching 

the teaching resources to the demand for instruction. 

The most important features of manpower models are the relatively long 

time horizons involved with manpower decisions and the uncertainty in future 

manpower requirements.  This chapter addresses these problems directly, and 

presents some approximation techniques that can be used to explore the range 

of possible manpower policies. 

The optimization problems described in this chapter are a part of the 

planning process.  They are not intended to dominate that process.  The models 

are intended as calculating devices to assist in the evaluation of policy.  A 

decision maker inputs data and assumptions to the optimization model and obtains 

a unique, and in one sense optimal, specification of future system performance. 



The data may consist of projected legacies, future requirements, budget conditions, 

costs, discount rates, utilization factors, and the coefficients governing the 

flow process.  The data itself represents assumptions about the future and in 

many respects is a specification of future manpower policy.  The decision maker 

feeds the data to the optimization problem and is presented with a description 

of future performance. The planner is then free to change the input data and 

explore a broad range of policy alternatives.  If the planning process is viewed 

this way, then the optimization problems become the heart of a policy simulation 

or policy exploration model. 

The material in this chapter is necessarily technical.  Each section 

starts with a brief resume of its results.  The non-technical reader should 

focus on these introductions. Section 3 is an example of the use of optimization 

procedures in designing an organization. The non-technical reader should have no 

difficulty with Section 3.  In general, we retain the notation and conventions 

developed in earlier chapters. We do allow the index of the longitudinal 

matrices P(u)  to run through a_ll non-negative integers to avoid unnecessarily 

complicated notation resulting from the previous maximum M. We exploit the 

probabilistic interpretation of the flow process whenever it eases the exposi- 

tion. The more technical sections assume a familiarity with linear programming 

and duality theory. 

Section 2 examines a long-run optimization model based on a longitudinal 

flow process.  We are able to calculate approximately optimal operating policies 

for the control of this system through the indefinite future. An example is 

included in Section 3.  The example uses the techniques developed in Section 2 

to design-a faculty promotion and hiring system.  Section 4 indicates how the 

long-run model can be used in conjunction with short run planning constraints. 



This type of analysis is particularly useful in cases of expansion or drastic 

institutional change.  It is necessary to exercise a greater degree of control 

during the early transition phase than is desirable when the system settles 

into its assigned role. 

In Section .5, we examine the special single class-single chain model and 

derive correspondingly sharper results.  Section 6 described a procedure for 

treating problems with uncertain requirements and other uncertain aspects of 

the flow process.  The technique allows one to calculate reasonable immediate 

decisions and to obtain an estimate of the long run impact of the uncertainty 

on system performance. 

Y 



2.     Optimal  Long Run Operations. 

This  section examines   the problem of  determining optimal,   or at   least 

good,  long range  operating policies  for manpower planning models.     This  is  an 

important consideration for manpower planners  since  the effects  of one period's 

planning decisions will be  felt over a  large number of   future  periods.     The 

succeeding  sections  show how  this  long run approach   can be  combined with  a 

detailed analysis  of a short planning horizon.     This   combined approach allows 

us  to focus  on  the  important current  planning decisions without sacrificing  the 

long  term view. 

The  linear programming model presented  in this  section uses   the  inflows 

to  the manpower system as  decision variables and minimization of  discounted cost 

as  the objective.     The data which defines  the  flow process,  costs,  and  constraints 

are presumed  to be given.     We are aware  that many important policy variables 

must be selected  in order  to define  this  data.     The data reflect a  combination 

of policy decisions,  behavioral traits,  and economic parameters beyond  the  con- 

trol of  the system.     Our optimization procedure  should be viewed  in  this   light. 

Given  the data,  and the policy implicit  in  the data,   there iü still a  great 

deal of choice  in  the way  the or^nnization can be run. 

To eliminate that choice, ? id  therefore,   to relate the policy directly 

to performance,  we choose   the  least  cost  method of  operation.     The  idea behind 

using such a model is  to determine and  compare  the results  of alternative  poli- 

cies.     Fortunately,   the  calculating device of  linear  programming  is  helpful in 

this regard.     We obtain a substantial amount of information about  thj effects 

of  changes   in  input data on system performance,   and,   if  the model is  small 

enough,   it   is  not   too  difficult  to resolve  the problem  frequently using  different 

sets of  data.     Therefore,   we are not  presenting  the  linear  piogram as  a   "take 



it or leave it" policy maker. The linear program should be viewed as a tool 

for exploring the connection between policy alternatives and system performance. 

This section is necessarily more technical than most parts of the book. 

Readers not trained in the techniques of linear programming will probably obtain 

a sharper understanding of the procedure by first reading the application in 

Section 3 and checking back to this section to see formal framework. 

In our model we make several simplyfying assumptions.  Most of these can 

be eased to some degree, buu these extensions are left as problems for the 

interested reader.  The assumptions are 

(i)  The manpower flow process can be described by a longitudinal model. 

(ii)  The variable costs of operating the system are proportional to 
stocks and flows. 

(1) 
(iii)  The system is of constant size. 

(iv)  Future costs are discounted at rate a < 1. 

(v)  The constraints on stocks and flows are homogeneous.  That is, if 
g  and g„ satisfy the flow constraints then g..+g  and Xg 

where A ^ 0 is a scalar) will also satisfy the flow constraints. 

The basic equation of longitudinal flow gives the stocks at time  t, 

t 
(2) s(t) = I    P(t-j)g(j) + Ut), 

j=l 

where 9.(t)     is the legacy of decisions prior to period 1. The size of the man- 

power system is l-_-<   s-(-) = es(t).  If we assume es(n) = p,  then our constant 

size restriction is 

t 
(3) e I    P(t-j)g(j) = p-eÄ(t),    t g 1. 

3=1 

The homogeneous constraints on manpower stocks can be written 

(4) As(t) SO,    t ^ 1. 



With  the aid  of   (2),   this becomes 

t 
(5) A    I    P(t-j)g(j) ä -AMt), t a  1. 

3=1 

The restriction to homogeneous constraints (A), is not as serious a limitation 

as it might at first appear. 

Example 1.  Suppose we would like a weighted sum of stocks in a period to be 

at least X.  Then if h.  is the weight applied to stock i, hs(t) = 

rN 
).   .,   h.s.(t)  a X,     This  is  equivalent  to 
^1=1 i i M 

hs(t) a X 
es(t)  p 

or 

(h-e -)s(t) § 0. 
P 

Hence, the original constraint can be written in this homogeneous form. 

Problem 1.  Suppose s(t)  must satisfy a constraint of the form ; / . S X, 

where es(t) = p > 0, and s(t) i.  0 insure that  fs(t) > 0  Show this is 

equivalent to the constraint  (Xf-h)s(t) ^0. Ü 

The constraints on flows are 

(6) Bg(t) g 0, g(t) g 0,  for t g 1. 

Let   the    N-vector    a  =  (a   ,.. . ,a )     and   the    K-vector    b  =  (b.. ,b_, . • . ,b   ) IN 1  /      K. 

give the costs of supporting stock and flow respectively in a given period. 

The present (time zero) value of the cost incurred in period  t  (and realized 

at time t)  is 

at[as(t)+bg(t)] . 

The total cost of operating  the system in   the  indefinite  future is 



(7) I    at:[as(t)+bg(t)]. 
t=l 

We  shall use   (2)   to eliminate    s(t)     from  this  expression,  but  first vre prove 

a basic result which  is  needed  in  this  chapter,   namely 

oo t 00 CO 

(8) I    </[   I P(t-j)g(j)l   =  (   I aUP(u))   I    cxtg{t). 
t=l j = l u=0 t=l 

We can depict the first sum in (8) in the triangular form 

ex (P(O)g(l) ) 

+ a2(P(l)g(l) + P(0)g(2) ) 

+ ct3(P(2)g(l) + P(l)g(2) + P(0)g(3)              ) 

+ cxlt(P(3)g(l) + P(2)g(2) + P(l)g(3) + P(0)g(4)    ) 

Summing  the  rows  of  this  array yields   the  total on  the   left  of   (8), while 

summing the  columns yields  the right hand side of   (S). 

Now  let ro 

P(o)   =    I    aUP(u). 
u=0 

Using  these  results we  combine  (2)   and  (6)   to obtain 

CO oo 

(9) I    at:[as(t)+bg(t)]  = c    I    c^gCO + afcCa) 
t=l t=l 

where    c  =  aF(a) +b    and    T(a)   = V"  n   a  Jl(t). 

Notice  that  the cost  component     (aS,(c(;)     can be considered as a sunk cost 

since it depends  on  legacies  of  past  inputs.     The next  section,  however,   indicates 

how policies   that  change  the   legacy can be   evaluated.     In  that  case  the  component 

aX,(a)     is  important. 



Problem 2: Suppose the cost of supporting stock, s (t)  depends upon the length 

of service distribution of that stock. Let a (u) be the cost of support for 

an individual in class 1 with length of service aqual to u. The present value 

of supporting future stocks is 

»    t-1 
v. = E a I    a (u)s (t;u), 

t=l   u=0 

where s (t;u)  is the number of Individuals in class  1 at time t with length 

of service equal to u. 

From Chapter II, Section 2, Equation 1, 

K 
si(t;u) = I    pik(u)qk(t-u). 

k=l 

Show that v., above can be rewritten as 

v. =- I a a (a)g(t), 
t-1 

where the k-th element of a (a)  is 

alk(a) = I    aUai(u)pik(u). 
u=0 

Therefore 

I v = I ^ I a (a) g.t) = a(a) I    aCg(t). 

t=l     t=0  Vi=l    J t=0 

The total cost is as before with c = SXa) +b. G 

The problem of selecting optimal Inflow vectors g(l),g(2) ,...,g(t),... 

is obtained from (3) , (5), (6) and (9) : 

00 

Minimize c £ a g(t) 
t=i 
t 

subject to      e    I    P(t-j)g(j) = p - e£(t), 

j=l 

V 



1 

t 

(10) A I    P(t-j)g(j) ä -A£(t), 
j=l 

Bg(t) ä 0, 

g(t) § 0, 

for t^l. 

The linedi program (10) has an infinite number of constraints and variables. 

In general, we cannot hope to obtain an exact solution of (10), but the techniques 

presented in this section indicate how an approximately optimal solution can be 

obtained by solving a linear program with a relatively small number or constraints 

and variables.  We first derive a linear program (11) from (10) with tfif property 

that any feasible solution  {g(t)} of (10) determines a feasible solution 

g = I -i a g(t)  0f (11) with equal objective value.  It follows that the optimal 

value of the solution of (11) is then a lower bound on the optimal value of (10). 

We next use the optimal solution of (11) to construct a policy (a sequence  {g*(t)}) 

that actually achieves this lower bound  That solution is approximately optimal 

in the sense that it (on the average) satisfies the constraints of (10) and 

achieves the minimum cost lower bound. 

We derive the finite linear program (11) from (10) by multiplying the 

t-th set of constraints by a  and summing.  Recall from equation (8), that 

00 t ^   t- 

1 ct  I    P(t-j)g(j) = P(oO I    a g(t). 
t=l   j=l t=l 

This  result  is  the key  to  transforming  (10).    The  linear program is 

Minimize    eg 

(11) subject  to      AP'(a)g ä -AK,(a) 

eP(a)g = j^-elia) 

Bg S 0, g g 0. 
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This program has only    K     (the number of chains)  variables,   and is usually very 

easily solved. 

For any sequence    {g(t)}     that is  feasible for  (10)   the variable    g = 

Lta:-[  a S^1-)     *s  feasible  for   (11) ,  and (11)  and  (10)  have exactly  the same objec- 

tive value.     The infinite sum will always  converge due  to  the constraint es(t)  = p, 

for all    t.     This observation shows  that  the optimi1 value of  (11)  is a lower 

bound on the optimal value of   (10).     It is possible that  the  optimal solution 

g*    of  (11)   is  such that no solution of  (10),     {g(t)},     exists with    )_     ,  a g(t)  " 

g*.     In that case the lower bound is slack and the optimal value of  (11)  is 

strictly lower than that of   (10).     If there does exist a feasible solution 

{g(t)}    of  (10)  such that    ]L=-i   a 8(0  = S*»     then the bound  is exact and    {g(t)} 

is an optimal solution of  (10) . 

Suppose we solve  (11)   and obtain an  optimal solution     g*.    We now indicate 

how to compute an "approximately" optimal  solution of   (10)   from this optimal 

solution    g*    of  (11).    The constructed solution,  call it     {g*(t)},  is not 

guaranteed to be  feasible for   (10).     It will satisfy the constraints    Bg(t)  § 0, 

g(t) g 0,    and    es(t)  = p,    and  it will attain the lower bound on the optimal 

value of   (10).    However, we  cannot guarantee that it will satisfy the constraints 

As(t) g 0    for all    t;     it will satisfy these constraints  in a weighted average 

sense,  and one can easily check to see if  the equilibrium solution implied by 

{g*(t)}    satisfies  the stock constraints    As(t)  g 0    for large values of    t. 

The solution    {g*(t)}    will be of  the form    {Y(t)g)}    where    y(t)     is 

a scalar calculated by solving the following lower triangular system of equations, 

P(0)Y(1) = r(l) 

p(l)Y(l)+p(0)Y(2) = r(2) 
(12) 

t 
I    P(t-J)Y(J) = r(t) 

j=l 
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In (12)  p(u) = eP(u)g*  and  r(t) = p - e£(t).  These equations are selected 

tc assure gMt)  will satisfy the size constraints, since 

t t 
e I    P(t-j)Y(J)g* = I    pCt-j)Y(j) = r(t) = p -eMt). 

j=l j=l 

In seition 5 we give general conditions on p(u)  and r(t)  that imply 

Y(j) g 0  for all j.  In our specific case we have the total legacy  eJ-(t) 

decreasing.  Therefore,  r(t)  is increasing.  By assumption eP(u) g eP(u+l) 

since the vector eP(u)  gives the probability of staying in the system u or 

more periods for each chain.  The solution g*  is nonnegative, so p(u) - 

eP(u)g* g p(u+l) = eP(u+l)g*.  By subtracting the  t-th equation of (12) from 

the t+l-th we obtain 

t 
(13)       p(0)Y(t+l) = [r(t+l) -rft)] + I     [p(t-j) - p(t+l-j) ]Y(j). 

1=1 

If r(t)  is increasing,  p(u)  decreasing, p(0) > 0,  and Y(1),•••.Y(t) g 0, 

then (13) implies that Y(t+1) g 0.  It follows by induction that Y(t) ä 0 

for all t.  This assures  Bg*(t) = Y(t)Bg* g 0 and  g*(t) = Y(t)g* g 0. 

Note that 

I    atg*(t) =  I    atY(t) Ug1* 
t=l Lt+1 

where we have let ^ _  a y(t)   = y.  The cost of the program {g*(t)} is equal 

to ucg*.  We now show that  y = 1,  and therefore the program {g*(t)} attains 

the lower bound eg* on the optimal value of (10).  From the feasibility of g* 

in (11) we have 

(14) eP(a)g* 
jpa_ 

1-a 
- ei{a). 

If we multiply  the    t-th  constraint  of   (12)  by    a       and  sum we  obtain   (recall  (8)) 

I    aU
P(u)   '    I    ctStt)     =    I    atr{t)=f--     I     a^O 

,=0 Mt=l j       t=l t=l 
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' 

However    L_n a P(u)  = eP(a)g*,    and     )     ,   a eÄ.(t)  = eS,(a) .     Therefore, 

(15) eP(a)g* I    aSct)     =^-eT(a). 
^t=l 

A comparison of (14) and (15) forces us to conclude that V ^ ), =i 
a  V(t) = X. 

Finally, we turn our attention to the stock constraints.  Let 

t 
s*(t) = lit)  +    I    P(t-j)g*(t). 

There is no guarantee that As*(t) S 0 for all t. However, the constraints 

are satisfied in a weighted sense.  The weight for the t-th constraint being 
t-1 

-:  .  The sum 
1-a 

«   t-1 
I -,  As*(t) = —   r [AP(o)g*+AÄ(a)] g 0. L       i_a    ^    a(l-a)      0 

Notice that the weights place stronger emphasis on the earlier perious, since 
t-1 

-r——  decreases in t.  It is easy to ascertain the limiting values of Y(t), 

g*(t)  and s*(t).  Since £(t) -»■ 0, we have r(t) ■> p. Therefore, 

Y(t) ->■ P/I"=0 P(u).  or 

00 

(16) Y(t) -»■ p/e I    P(u)g* = p/eLg*. 
u=0 

In (16) the matrix L = Jl _ P(u)  is simply the matrix of average lifetimes. 

It follows immediately that 

Pg* 
(i)   g*(t) + eLg* ' 

(17) 

The stock constraint in the limit is verified by checking ALg* g 0. 

Problem 3:  Suppose the system grows at rate 6-1, where 9a < 1.  Show that 

the results of this section continue to hold with P(u), a and  g(t)  replaced 
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by     P'(u)   =  0 ^(u),     a1   =  Qa    and     g'(t)   =  9     g(t) . 

Problem 4:     Instead  of  a total  size,    es(t)   = p,     constraint,   suppose we have a 

constraint  ca some weighted  size measure    fs(t)  = p    where     f     is  a positive 

vector.     Verify  that   this will not  affect  the arguments presented  in  this  sec- 

tion  if   (12)  has a nonnegative  solution. 

Problem 5:     Suppose    P(u)   =  Q .     This  implies   the model   is  cross  sectional. 

Show  that 

(i) P(cO   =   (I-aQ)"1, 

(ii) T(a)  = a?(cOQs(0), 

(iii)        g*(t)   =    f— s*(t), 

where    w    is a row vector,     g*w    an    N  * N    matrix,    and    w    = ^..n    is the 

fraction of those in class     i    that leave the system.     Note that    eg*    is a 

scalar. 

Problem 6:     If  the objective  is  to minimize the average cost  per period,  show 

how an "approximately" optimal solution can be obtained  from the linear program. 

Minimize eg, 

ALg 6  0, 

eLg =  p, 

Bg g 0, 

8 ä 0, 

where    L =  ;     ... P(u) .     and     c = b + aL. 

Problem 7:     Suppose  the constraints on     g(t)     are  of  the  form 

g(t) -Fz(t)   =  d,       g(t) S  0,       z(t)  g  0 

X 
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where F is nonnegative.  In particular, if F is the identity matrix then 

we have g(t) S d.  Show that the results of this section continue to hold with 

t 
£,(t) = £(t) + I      P(t-u)d, 

j=l 

g'Ct) = g(t) -d. 

Hint:     There always exists a matrix    B    such that    Bx ^ 0    if  and .„nly if 

x = Fz    for some     z g 0. G 

We can use the dual of linear program (11) to obtain some idea of the 

sensitivity of the ootimal lower bound and the policy g* to changes in some 

of the data.  The dual problem is 

Maximize 4. j^-e£(oO - vA£(oO 

subject to $  eP(a) + vAP(a) + wB § c 

(j) unrestricted,  v § 0,  w g 0. 

Example 2: Recall that the total lower bound on the optimal cost of (10) is 

a^a) + eg* where g* solves (11).  Suppose we wish to change to £'(0) = 

£(a) + 6£.  The change in minimum cost (for  ö£ small) is 

(a- (j)e - vA)6£ 

where $    and v are part of an optimal solution to (18) . 

Problem 8:  Suppose a change is made to a' = a+6a. Show that the change in 

minimum cost is roughly 6a[£(a) H-P(a)g*]. 
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Problem 9:  Continuation of problem 1.  Suppose the first row of A is Xf-h, 

and that a change X1 = X + 6X is made.  Show that the change in the optimal 

value of (11) is equal to -v fP(a)g*:. 

u-1. f-1. 
Problem 10.  Let P' = I n ua

U P(u) ,  «,' = 7 . ta  Ut) Show that the 

change in optimal value of (11) due to a small change in a is 

(a-vA-())e)a'+P'g*) + JLL 
d-cO' G 
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3.  Faculty Promotion Policy; Kr.  Example. 

This section presents an analysis of faculty promotion policy based on 

the theory developed in section 2.  The intent is for the reader to benefit 

from the. model building and analysis in this section without a detailed under" 

standing of the more technical material in section 2. 

Almost all university faculty systems employ some form of tenure policy. 

Usually a new appointment to the faculty is given a trial period of less than 

eight years.  Before this period is over the appointee must be either granted 

tenure or dismissed. Individuals who have teen granted tenure cannot be dis- 

missed (except for disciplinary reasons) until they reach a mandatory retirement 

age.  The promotion policy of the institution is critical since it is one of 

the few factors which decision makers can control in determining the structure 

of the faculty. We first give a simple example to illustrate the relations 

between promotion policy and i) fraction tenured, ii) new appointm aits, and 

iil) time spent In nontenured ranks.  This simple example is followed by a more 

extensive model which illustrates the theory of section 2. 

Consider a faculty with two manpower classes, nontenure and tenure. 

Suppose that each year the institution appoints a total of g1 + g„ new faculty 

members, and all these spend 7 years in nontenured positions. Following this 

seven year period,  g1  of them continue and spend 28 years in tenured positions, 

whereas  g„  leave having failed to be promoted.  Let s1  and s„ be the steady 

state stocks of nontenured and tenured faculty. Then from equation III.5, 

s1 = 7g1+7g2 

and 

B2 = 28gl. 

For example whe-  i1 
== g-j = 5, then s.. = 70 and s = 1A0. 
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Let the fraction of new appointments that are promoted be  9,  so that 

ü = g1/(g1+g2). 

Also assume that the faculty is of fixed size equal to 210.  Then the stocks 

can be written in terms of the promotion fraction 6, 

s1 = 210/(1+46) 

and 

s2 = 8400/(1+49). 

From these the fraction of faculty that is tenured is 

S2/(S1+Ö2) = 49/(1+4e)- 

Figure V.l shows how the fraction of total faculty that is tenured, 

varies with the fraction promoted.  Clearly as the fraction promoted increases 

the fraction tenured increases. Suppose we are interested also in how the 

number of new appointments varies with the fraction promoted.  From the above 

relations it follows that 

g1 + g2 = 30/(1+46). 

This relation is shown plotted in Figure V.2.  Clearly an increase in the frac- 

tion '-x/omoted leads to a decrease in the number of new appointments. 

Let us now fix the promotion fraction 6 at 0.5, so that  g1 = g9, 

keep the total faculty size at 210, and let the time spent in nontenure be a 

variable £.  If the total time spend in the system for th >se promoted to tenure 

is 35 yea s, then 

s1 = lh + £82 

and 

s2 - (35-£)g1. 
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Figure V.2.     New appointments  vs  fraction promoted. 
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It  is easy  to see  that the steady state  fraction of faculty with tenure is 

(35-)0/(35+£.),     and  the number  of new appointments  is    420/(35+£).     Note that 

a decrease  in     i    from 7 years   to  5  years   increases  the tenure  fraction  from 

0.66 to  0.75.     It also increases the new appointments  from 10 to 10.5. 

Most   faculty and administratorLi would  like   to have a high rate  of new 

appointments,   high promotion rates,   short  periods   in nontenure,  and  a  reasonable 

fraction of  the faculty without   tenure.     Clearly one must strike a balance among 

these  factors  and  in a complex system  it   is not always possible  to  see  exactly 

where  the  balance should  lie.     In the  remainder  of  this  section we demonstrate 

the use of  the theory of section  2  in  "optimizing" among the various  factors. 

We build a model with  two manpower  classes,  nontenure and  tenure,  and 

fifteen  chains   (or  career paths).     The  fifteen chains are as  follows: 

(i)     For    k=  1,2,...,7,     a person a  chain    k    is appointed without  tenure, 

spends    k    years in nontenure   ranks,   is  promoted  to  tenure  and spends 

a  total  of between  30 and  A0 years   in  the system.     The distribution 

of  total  time spent  in the system is uniformly distributed between 

30 and 40. 

(ii)     For    k =  8,9,...,14,     a person  on  chain    k    is appointed without 

tenure,   spendß     (k-7)     years   in nontenure ranks and  then  leaves, 

(iii)     A person on chain 15  is appointed with tenure and  the time he spends 

in  the system is uniformly distributed  between 20 and 30 years. 

For   completeness  the  39     2x15     matrices     P(u),    u =  0,1,...,38 

are  shown  in Table  V.l.       As  usual,  blank entries  represent  zeros.     For    u > 38 

P(u)     are  all  zero matrices. 

Our  object  is  to  formulate a planning problem in the  format  of   (11)   in 

Section  2.     The reader should  check  that     A    is  a matrix for constraints on 
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Chain    k 
Periods 

of Nontenure appointments Nontenure appointments Tenure 
not promoted appt 

8  9  10 11 12 13 14    15 

„  . promoted not promoted appts 

0 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 .0 1. ,0 1, .0 1, .0 .0 

1.0 

1 
1.0 1.0 1.0 1.0 1.0 1.0 

1.0 
1.0 1, .0 1. ,0 1, ,0 1, .0 .0 

1.0 

2 
1.0 1.0 1.0 1.0 1.0 

1.0 1.0 
1, .0 1. 0 1. ,0 1. ,0 .0 

1.0 

3 
1.0 1.0 1.0 1.0 

1.0 1.0 1.0 
1. ,0 1. .0 1, ,0 .0 

1.0 

A 
1.0 1.0 1.0 

1.0 1.0 1.0 1.0 
1. ,0 1. .0 ,0 

1.0 

5 
1.0 1.0 

1.0 1.0 1.0 1.0 1.0 
1. ,0 .0 

1.0 

6 
1.0 

1.0 1.0 1.0 1.0 1.0 1.0 
.0 

1.0 

7 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

8 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

9 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

10 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

11 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

12 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

13 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

14 
1.0 1.0 1.0 1.0 1.0 1.0 1,0 1.0 

15 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

16 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

17 
1.0 1.0  1.0 1.0 1.0 1.0 1.0 1.0 

18 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

19 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

2? 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 

21 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 

22 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 

Table V.l.       The matrices    P(u) for  the 15 --c hain faculty example • 
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23 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 

24 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 

25 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 

26 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 

27 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 

28 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 

29 
1.0 1.0 1.0 1.0 1.0 1.0 1.0 

30 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 

31 
0.8 0.8 0.8 0.8 0.8 0.8 0.8 

32 
0.7 0.7 0.7 0.7 0.7 0.7 0.7 

33 
0.6 0.6 0.6 0.6 0.6 0.6 0.6 

34 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

35 
0.4 0.4 0.4 0.4 0.4 0.4 0.4 

36 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 

37 
0.2 0.2 0.2 0.2 0.2 0.2 0.2 

38 
0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table V.l.   (   jntinued) 

V 
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stocks,  and    B    is  a matrix for constraints on  flows.     P(a)     is determined 

from the matrices    P(u)     and  the discount factor    a    which we  take to be 0.95. 

The vector      £(01)     is determined  from the legacies as we see below,  and    p     Is 

the.  fixed size of  the  faculty system. 

In our example we place no  constraints  on stocks other than the one of 

fixed total faculty size.     Thus  the constraints with the    A    matrix drop out 

of  the problem.     However, we place several constraints on the system which lead 

to a matrix   B. 

(i)     Constraint on  fraction promoted. 

Let us assume  that we require that at  least a  fraction    a,    of new non- 

tenure appointments get  promoted to tenure.     Then 

14       1 
^    gk    ^ V 

k=l    k) 1 

f 7      1 c 
I gk /[ 

lk=l  fcJ 

This can be rewritten 

14 
(1-V     I    Bk-«      I    g^O 

k=l k=8 

In the example we assume    a    = 0.33. 

(ii)     Constraint on tenure appointments. 

To allow for  flexibility we require that a  fraction    a9    of all new 

appointments be made at  the tenure level.    Thus 

This can be rewritten 

f15 

ß.3/    I    gk 
'-J   lk=l    K 

U 

V 

I g^+a-og^ ^ 0 
k=l 

In the example we assume a    =  0.025. 

2/015 

l !  .. ... . 
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(iii) Cünstralnts on average nontenure lifetimes. 

Low average times in nontenure ranks make a university attractive to 

prospective appointees who have high expectations of being promoted. For those 

not promoted the university could keep a faculty member without tenure for the 

full seven years and be very economical.  But such a policy is somewhat unfair 

to the faculty member who stays with no hope of promotion and also prevents a 

new appointment into his position.  Thus we set upper bounds on the average 

time spent without tenure. 

Let T  and T  be upper bounds on the average times spent in nontenure 

ranks for those eventually promoted and those not promoted respectively. Then 

7        W 7      1 I   kg   M   gk  * v 
k=l    kJ lk=l ^i     i 

and 

i4 i r1A 

I     (k-7)g    /    I    g 
k=8 RJ   ^k=8    K 

^   Tr 

These can be rewritten 

and 

I       (T   -k)g      ^   0, 
k=l i k 

14 
I     (T7-k+7)g,   ^ 0. 

k=8 

In the example we assume    T    =  5.5 years,  and    T     = 4.5 years. 

(iv)     Constraint on long range  tenure fraction. 

In the long run we require  that  the fraction of faculty  in tenure ranks 

be no more than    a   .     Let     £..       and    £„.     be the expected number of years 

spent  in nontenure  and  tenure  ranks  for chain    k.     Clearly,   if    L    is  the    2'< 15 

ma tn.. of the numbers, L = £ P(u).  This constraint can be written 
n=0 
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15       15 

k=l      k=l 

or 

15 
l    («3Älk-(l-ct3)£2k)gk ^ 0. 

k=l 

In the example we assume a = 0.70. 

The above four sets of constraints form the Bg «: 0 constraints of (XI). 

To complete the model formulation we need the legacies Ä.(t)  and the costs 

a and b.  The costs on input flows, b, are assumed to be zero. The costs 

(in units of $1000)  on stocks, per period, are 

a = (14.5, 28). 

P(a)  is calculated from the P(u)  matrices in Table V.l and a = 0.95 and 

is shown together with  P(a)  in Table V.2. This gives 

c = aPVct) +b, 

a 15-component vector also shown in Table V.2. 

The legacies Ä(t) are shown in Table V.3 (the numbers in the last 

column are explained later).  These give the numbers in each class in each 

future period if no new inputs were made into the system.  From this data 

GO 

T(a) = I    atJl(t) = [656, 6883], 
t=l 

and    eT(a)  =  7539.     The total  faculty size    p    is  taken to be 1000,  so  that the 

right-hand-side coefficient   (see   (11)) 

[ap/(l-a)] -eT(a)  = 11,461. 

The linear program (11) can now be written out, with 15 variables 

g ,g„,...,g  ,  and 6 constraints.  The whole program is shown in Table V.4. 

The last row gives the optimal soluti i g*, and the minimum total future 
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Legacies Ut) 

t Nontenure Tenure p-eMt) 

1 264 623 113 
2 196 621 183 
3 135 617 248 
4 84 611 305 
5 43 603 354 
6 15 591 394 
7 574 426 
8 553 447 
9 531 469 

10 510 490 
11 489 511 
12 467 533 
13 446 554 
14 424 576 
15 403 597 
16 381 619 
17 360 640 
18 339 661 
19 317 683 
20 296 704 
21 274 726 
22 253 747 
23 232 768 
24 212 788 
25 191 809 
26 170 830 
27 150 850 
28 130 870 
29 110 890 
30 90 910 
31 72 928 
32 56 944 
33 42 958 
34 30 970 
35 20 980 
36 12 988 
37 6 994 
38 2 998 
39 0 1000 

26 

Table V.3.     Legacies  in nontenure and tenure ranks. 
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expected cost.  It now remains to calculate the numbers (yCt)}  using (12) of 

section 2 in order to obtain the optimal hiring and promotion policy from g*. 

Recall that the right-hand-side of the t-th equation in (11) is 

r(t) = p-e£(t).  These numbers are shown in the last column of Table V.3. 

The coefficients  {p(u)} are given by p(u) = eP(u)g*. The reader can check 

that the first six elements are given by 

u 0 1 2 3 4 5 

P(u) 1368 1368 1368 1368 921 474 

From equations (11) we obtain 

Y(t)   0.083   0.051   0.047   0.042    .063   0.073   0.048 

These lead to the optimal hiring and promotion policy for the first six pericdd 

shown in Table V.5, and the steady state policy. All numbers have been rounded 

to the nearest integer. 

We now interpret the results in Table V.5.  First we see that we have 

a stationary policy with respect to time to promotion and time to withdrawal 

of unpromoted faculty. This is a highly desirable feature of the model which 

arises from the form of the solution g*(t) = Y(t)g*, since it leads to smooth 

operating policies. With the costs and constraint parameters given, the optimal 

course of action is to promote faculty after 5 and 6 years in nontenure ranks, 

and to require them to leave after 4 and 5 years if they are not to be promoted. 

The 33% promotion constraint is binding, as is the 2.5% constraint on appoint- 

ments with tenure. 

■■. 
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The. results In Table V.5 are from one run of the model under the various 

constraints mentioned.  What a decision maker can do is to try changing various 

constraints and see what effect these changes have on the optimal solution. We 

stress again that the answers presented in Table V.5 are not to be interpreted 

as a "take-it-or-leave-it" solution.  This small linear program is so easily 

and quickly solved that it is best done at a computer terminal in  interactive 

mode so that various policies which affect the constraints can be changed.  Recall 

that we required that no more than 70% of the faculty in any period be in tenure 

positions.  If this is reduced to 65% the program (11) has no feasible solution. 

Thus important information can be obtained by trying different values of the 

parameters in the model. 
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4.  Transient Problems. 

This section shows how to combine an initial planning phase with the 

long run planning problem described in Section 2.  The initial decisions to be 

made by an organization are of far greater significance than the planned future 

decisions, since one can always revise future plans. We do not have the luxury 

of revising today's decision, but have to make the decision and live with the 

results.  A useful planning tool, therefore, concentrates on the initial deci- 

sions, since they have an immediate impact and are more likely to be precisely 

implemented. At the. same time a planning model should consider the long range 

implications of present decisions, so it is important to bring the long run or 

steady state analysis into the model in some way. We can do this by combining 

an initial T stage planning problem with infinite stage problems of the type 

described in Section 2. The result is a linear program with the format of a 

T + l stage planning model. As we have pointed out in previous sections and the 

introduction to this chapter, the explicit decision variables and objective 

function of the linear programming model are not of overriding significance. 

Much of the data that determine the flow process, the level of constraints, and 

the costs associated with the manpower stocks and flows result from important 

policy decisions.  If the linear prograuming model is flexible, it is possible 

to calculate the impact on the system of changes in these policy decisions.  In 

this way the planning model becomes a useful device for simulating the impact 

of proposed policies or even for designing new policies. 

The initial planning phase consists of the selection of input flew vectors 

g(l),...,g(T).  These are constrained by the linear inequalities: 

T 
(19) I    F(t)g(t) g d,   g(t) § 0,   1 s t § T. 

t=l 

"V" 
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We are vague about the specific interpretation of these constraints 

since they can be any constraints that we desire with the given mathematical 

form.  One particularly interesting set of constraints is the first T con- 

straints of the long run problem. This set of constraints would result in 

the rigid enforcement of the constraint As(t) ä 0 in periods 1 through T. 

Another simple example is a set of constraints which allow alternate p^owth 

paths for an organization that is growing to a specified steady state size. 

The flow vectors g(l),g(2),...,g(T)  determine a legacy in future periods 

7+1,1+2,...  Let £(T,t)  be the legacy in period t,  for t ^ T.  Then 

T 
(20) £(T,t) = lit)  + I    P(t-j)g(j), 

j=l 

where lit)     is simply the legacy due to decisions before time zero.  The stock 

of manpower at time t ^ T+l is given by 

t 
(21) s(t) = Jl(T,t) +  I      P(t-j)g(j). 

j=T+l 

Let p be the stipulated size of the organization at time T and 6-1 the 

growth rate in periods T+l, T+2, etc.  The constraints on g(t)  for 

t g T+ 1 are: 

t 
A  I      P(t-j)g(j) S -AÄ(T,t), 

j=T+l 

t 
(22) e  I      P(t-j)g(j) = p-e£(T,t), 

j=T+l 

Bg(t) g 0,  g(t) ä 0. 

The present value (at time 0) of the costs incurred from time T+l onwards 

is given by 

\"  . . ' X 



33 

(23)    I    'xt[as(t)+bg(t)] = I    atal(t)+   I ata 
t=T+l t=T+l        t=l 

I      auP(u) g(t)+ I    o^cgit) 
n=T+l-t     J     t=T+l 

v00  u 
where c = b+ a 2, _nci P(u). Notice that only the last term of (23) depends 

on decisions taken after time T. 

Problem 11:   Verify (23) D 

From the results of Section 2, we know that for any value of 

g(l) >g(2),...,g(T) , we can find an approximately optimal operating policy from 

time T+J. onwards by solving a linear program. The cost contribution of g(t) 

for  t g T + 1 is 

(24) 
r    t v    t 
I       a cg(t) = eg  where  g =  £  a g(t) 

t=T+l t+T+1 

By using (22) and (24) we see that the linear program for calculating an approxi- 

mately optimal solution from time T+l onward is 

(25) 

where 

Minimize  eg 

iubject to  Ap'(a)g g -AiTd.a) 

eP(a)g = (p/l-cO -eUT.a), 

Bg g 0,  g g 0, 

(D     g=  I  atg(t), 
t+T+1 

and   (ii) ^(T.a) =  I  a l(T,t) 
t+T+1 

Problem 12: 

Show that 

£(T,a) =  I      c^Ut) +    I    ^ 
t=T+l 

Hint:  Use equation (20). 

r     U 
I        a P(u) 

2=1       [u=T+l-j 
g(j) 

D 

.:■■..    ...'..■      ;-■•.   ■ . .      : \ .'v ' .-..::y::^.:,i-   4Sisi&$i!&äSitäik&k   ■ 
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Let c(l) ,c(2),...,c(T) be the costs associated with selecting 

g(l),...,g(T).  To avoid double counting we assume the c(t)  refers to costs 

actually incurred in periods t, for 1 ^ t s£ T. 

Example 3:  Let a(t)  and b(t) be the respective costs of stocks and flows 

in period t.  The total costs incurred in periods 1 through T are: 

T  . 
I    a

t:[a(t)s(t)+b(t)g(t)] 
t=l 

T T T     . 
= I    a

ta(t)Ht)+   I    a,:[b(t)+ I    at~ja(j)P(t-J)]g(t). 
t=l t=l        j=t 

The cost incurred in period t is 

T-t 
(27) c(t) = b(t) + I    aUa(t+u)P(u) 

u=0 
D 

The linear program (25) is used to select an optimal longrun policy 

given g(l) ,...,g(T). We can put the initial constraints on g(l) through 

g(T) together with (25) and simultaneously choose g(l),...,g(T) and g. 

The total cost of any such plan is, from (23) and (27), 

oo T T-t 
(28)       I    ata(t)£(t) + £ at:[b(t)+ £ aUa(t+u)P(u) ]g(t) +cg. 

t=l t=l        u=0 

The entire linear program becomes 

T  t 
Minimize   ^ a c(t)g(t)+cg, 

t=l 

(29) 

subject to   I    F(t)g(t) ^ d, 
t=l 

f 00 

A ^ at   I      aUP(u) 
t=l   lu=T+l-t 
T    r-     " 

e J] a    J^        a P(u) 
t=l   u=T+l-t 

g(t)+A5'(a)g £ -A I      at£(t), 
t=T+l 

00 

g(t)+e?'(a)g = p-e I      a Ä(t) , 
t=T+l 

Bg ^ 0, 

g ^ 0 

g(t) ^0,    t = 1,2,...,T. 

 : J ll^^ , : ._, .   . . ^^  
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This rather formidable linear program solves the combined transient- 

steady state problem.  In the next section we demonstrate some specific models 

that exploit the ideas presented in this section. 

mm. ^^^^^^ i^ -■ -1 Ü - 
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5.  Optimization in a One Class, One Chain Model. 

This section examines some optimization problems based on the one class, 

one chain longitudinal model of Section 3, Chapter III.  The simplicity of 

this model allows us to obtain sharper and more interesting results than are 

possible with the general longitudinal model.  The usefulness of the analysis 

and results lies in the fact that a one class, one chain model is the result 

of aggregating over classes and chains.  In complex planning situations it Is 

frequently possible to devise a classification scheme to allow for nearly 

independent operation of each manpower class.  An understanding of simple, 

although imperfect, models of the manpower system is an indispensible aid in 

the construction of more sophisticated models. 

The first problem considered is that of meeting given manpower require- 

ments of minimum cost.  A related problem of maximizing a measure of effective- 

ness subject to budget constraints is discussed later in the section.  Both 

prubleras are formulated as infinite horizon linear programs.  The exact form 

of the optimum policy is determined and it is sho\m how this optimal policy 

is well approxinated by the solution of a finite horizon (usually quite small) 

linear program.  The theory is presented in its simplest form.  Extensions are 

left as problems for the interested reader. 

In the basic one class, one chain model g(t;  gives the number of new 

input into the system in period  t,  and p(u)  gives the fraction of those 

who remain in the system at least u periods.  Thus if s(t)  are the stocks 

a t t ime t, 

(30) (t) = l(t)  + I    p(t-j)g(j),    t ^ 1, 
j=l 

where l(t)     is the "legacy" at time t due to accessions prior to time zero. 

Now let c(u)  be the cost of support for an Individual who has length of 

ifeSfitete^l^i'Vri!'-^^^^ 
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completed service equal to u,  and let a be a discount rate applied to 

future costs.  Ta*f present value (at time zero) of the manpower costs incurred 

in period t is therefore 

a I    c(u)p(u)g(t-u) 
u=0 

This expression can be written as 

I    c(t-j)p(t-j)g(j)  + h(t) 

where h(t) = ^ if. c(t-j)p(t-j)g(j) .  The second term in this expression, h(t), 

is a "cost legacy" due to accessions prior to time zero. Let 

c(a) =    l    a  c(u)p(u), 
u=0 

which can be interpreted as  the expected   rot£.l discounted cost of  an accession. 

Then the present value of all future costs  is given by 

(31) c(a)     I    a,:g(t) +    I    ath(t) 
t=l t=l 

Problem 13:     To obtain  (31)  one needs  the  result 

j;    o^    ^     c(t-i)p(t-j)g(j)  = c(a)     I    atg(t). 
t=l        j=l t-1 

Verify this result. 

Problem 14:     Let    r(u)  = p(u-l) -p(u),    u ^ 1.     Then    r(u)     is the probability 

that an individual stays  in the system exactly    u    periods.    Also  let    d(u)  = 

Ij_n « c(j),     so that    d(u)     is the present value of  the cost of  a person who 

stays  in the system    u    periods.    Then    £    ,  r(u)d(u)     is  the expected total 

discounted  cost of an accession.    Show that 
oo oo 

I    r(u)d(u)   =    I    aUc(u)p(u). 
u=l u=0 
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Example 4: For a system where the maximum number of periods in the system, 

M,  is 5 (so that p(u) = 0, ui:6), let the lifetime distribution and costs be 

given by 

u 0 1 2 3 4 5 

P(u) 1.0 1.0 0.9 0.8 0.5 0.2 

c(u) 15.0 6.0 8.0 11.0 14.0 18.0 

Let the discount factor a be 0.9, and past accessions be given by 

t -4 -3 -2 -1 0 

g(t) 400 600 800 1000 1000 

Note that for periods prior to  -4 all cmcession have left the system by time 

zero.  For the above data the legacy and cost legacy are given by 

t 1 2 3 4 5 

Ht) 2920 2220 1460 700 200 

Ht) 25880 23760 18680 10600 3600 

Problem 15:  Based on example 4. 

If a = 0.9, what is the value of c(a)? 

G 

Let a(t)  be the manpower requirement at time  t.  The value a(t)  is 

interpreted as a minimum •equirement, so that the stocks at time t must be at 

least as large as a(t).  Thus from (30), 

t 
£(t) + I    p(t-j)g(j) ^ a(t),    t ^ 1. 

j=l 
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Now let    a(t) - £.(t)  = b(t) ,     so that    b(t)     is the net  requirement at 

time    t     (actual minus legacy)  which must be obtained from accessions in periods 

l,2,...,t.     The minimum requirement constraint  thus becomes 

t 
I    P(t-j)g(j) ^ b(t). 

j=l 

The problem of minimizing the cost of meeting a schedule of future (net) require- 

ments is to find future accessions  {g(t)} in order to 

00 

(33) Minimize  c(a) £ at:g(t) 
t=l 

t 
subject to   I    p(t-j)g(j) ^ b(t) 

j=l 

g(t) ^0,    t = 1,2  

The reader should notice that as long as c(a)  is positive (certainly 

the usual case!) its value will not affect the optimal accessions policy. 

Although it: affects the value of the objective function in (33) , since it is 

simply a multiplicative constant it has no effect on the optimal value of the 

variables. Thus (33) can be solved without any knowledge of the costs c(u). 

The only assumption required is that these costs depend only on a person's 

length of service u, and not on when the person entered the system. 

Problem 16:  Suppose that there is a lower bound x(t)  on accessions in period 

t.  Show that the linear program (33) is the correct problem formulation if 

g(t)  is interpreted to be the number of accessions above the lower bound and 

t 
b(t) = a(t) -£(t)- I    p(t-i)x(j). 

3=1 

What constant must be added to  the variables obtained  from  (33)  in order to 

calculate the total expected  future cost? 
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Problem 17;    Suppose  that.    a(t)     measures the demand for  "effective" manpower, 

and  let    e(u)    be the  "effectiveness" of an individual who has    u    periods of 

completed  service.     If    b(t)     is   the net  demand  for  effective manpower,  show 

how to compute an "effectiveness"  legacy,  and show that  the constraints in   (33) 

become 
t 
I     e(t-j)p(t-j)g(j)   ^ b(t). 

j=l 

Problem 18: Continuation of problem 15, based on example 4, 

Let the effective manpower demands, a(t), be given by 

t 1 2 3 4 5 6 

a(t) 3120 2300 2150 2000 2000 2000 

Calculate a feasible solution of (33) for 6 periods. What should be the value 

to g(t)  for large t? 

G 

Suppose that p(0) > 0. This is a trivial assumption which says that 

not everyone leaves the system the instant they join it!  Now define g (t) 

for each t ^1 by 

t-1 
(34) g+(t) = MaX{0,[b(t) - I    p(t-j)g+(j)]/p(0)}, 

j=l 

The reader should verify that the  {g (t) } forms a feasible solution to (33). 

Thus (33) is always feasible and we show below that the feasible solution given 

by (34) is often optimal. 

Problem 19:  Continuation of problem 18. 

Calculate g (t)  for six periods, 

0 
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The linear program (33) has an infinite number of variables which must 

satisfy an infinite number of constraints. In general the optimal solution of 

such problems is impossible to determine. However, the special structure of 

the manpower flow model allows us to say a great deal about the optimal solu- 

tion, and indeed allows us to demonstrate that, under certain conditions on 

the demands, {g (t)} defined by (34) gives the optimal solution. First we 

present the dual linear program to (33) , 

Maximize   £ v(t)b(t), 
t=l 

(35) subject to   I    v(t+j)p(j) i a c(a), 
j=0 

V(t) S: 0,      t = 1,2  

For each t ^ 1 define 

(36) . v*(t) = (^(cO/pte), 

00 

where p(a) = £ a p(u). 
u=0 

The reader should show that v*(t)  is both feasible and optimal in (35). 

Problem 20: Continuation of problem 19. 

Calculate ~(a)/p^(a)  for the example, and write out v*(t),  t = 1,2,3,4,5. 

Problem 21; Continuation of problem 17. 

Using the measure of effectiveness e(t) introduced in problem 17, 

write out the dual linear program which replaces (35) and its optimal solution 

which replaces (36). 

D 
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In order to investigate further the optimal solution to (33) and use 

duality theory from linear programming, the following basic assumptions are 

made: 

(i)   0 < a < 1. 

(ii)   c(ct) > 0. 

(37) (iii)  p(0) > 0, and p(u) *  0  for all u i 1. 

(iv)  Mot) = I"=1 ahit)  <  co. 

(v)  b(t) ^ 0 for all t larger than some T. 

In our simple model (33) these assumptions almost trivially hold. 

Number (iv) says that future net requirements cannot grow too rapidly, whereas 

number (v) says that, although one may start with negative net requirements 

(a short-range surplus exists), the net requirements eventually turn positive 

and remain positive.  In the more general case where effectiveness is introduced 

these assumptions become more restrictive. 

Problem 22:  Continuation of problems 17 and 21. 

For the effectiveness model the assumption corresponding to (37)-(iii) 

would be a(0)p(0) > 0 ind a(u)p(u) i- 0,     u ^ 1. Present an example with 

a(u) < 0 for some u. 

a 
Under the assumptions in (37) a great deal can be said about the optimal 

soluticns to (33) and (35), and the main result is stated as a theorem. 

Theorem 1: Under assumptions (37) the dual linear programs (33) and (35) both 

have optimal solutions.  If these are denoted {g*(t)} and {v*(t)} then 

the equality 

I    v*(t)b(t) = c(oO I    atg*(t) 
t=l t=l 

also holds. 
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The proof of this theorem is exceedingly technical and can be found in 

references given in the "Notes and Comments" section at the end of the chapter. 

The theorem can be used to show that, if  {g(t)} and {v(t)} are any feasible 

solutions to (33) and (35) respectively, then they are optimal if and only if 

(i)      v(t) 

(38) 

(ii)      g(t) 

both hold for all t g 1. 

t 
I    P(t-j)g(j)-b(t) 

I    v(t+j)p(j) -o^cOx) 
LL=o 

o, 

= o. 

Problem 23:     Using theorem 1 show that  the complementary slackness conditions 

(38)  must hold if    {g(t)}    and     {v(t)}    are optimal solutions  of   (33)   and   (35). 

Problem 24:     Continuation of problems 17,   21,  22. 

For the example using effective manpower write down the complimentary 

slackness  conditions which replace   (38). 
D 

Theorem 1 and the result (38) are now used to show that under certain 

conditions the simple feasible solution in (34),  {g (t)}, is also optimal. 

Consider first the accessions required to exactly meet future require- 

■ments.  Denoting these by {g (t)}  they are the unique solution to the equations 

t 
(39) I    p(t-j)gX(j) = b(t),    t £ 1. 

j=l 

If  g (t) ^ 0 for all  t ^ 1  then this solution is feasible in (33).  Also 

x -f- 
it is clear that g (t) = g (t) ,  t S 1.  Taking the {v*(t)} defined by (36) 

X 
the  reader  can see  that     {g   (t)}     and     {v*(t)}     satisfy   (38). Thus  the simple 

solution  to   (39)   is optimal whenever  it   is non-negative. 

It  is  generally  impossible   to verify whether or not  the solution of   (39) 

is non-negative.     However,  under certain conditions on the net requirements. 

V 



44 

b(t), and the flow fractions, p(u), we show that the solution of (39) is 

non-negative, and hence is optimal. 

Under the policy implied by (39) the input flow in period t+1 is 

x 
g  (t+1).     The amount of this which is available  to meet requirements at  time 

x 
t+1    is    p(0)g  (t+1).    To exactly meet  requirements  this inflow must be equal 

to any change  in net requirements  in the period, which is    b(t+l)-b(t),     plus 

any losses during the period, which amount  to     K       [p(t+l-j) -p(t-j)]g   (j). 

Therefore 

t 
(40) p(0)gX(t+l)  = b(t+l) -b(tn-   J]     [p(t+l-j) -p(t-j)]gX(j). 

3=1 

After some rearrangement of  terms and with  the aid of  (39)   this  can be written 

as 

(41) p(0)g  (t+1)  =    I b(t+l    p(t+l-i) 
p(t-j)gx(j) 

j^1Lb(t)        p(t-j)J 

Using  (41)   one can prove 

Theorem 2:     Under  the assumptions in   (37),   if 

(42) ^TT^-T^T      for     1 2i j  * t    and    t^l, b(t) P(j-l) J 

then the solution of (39) is non-negative and is thus an optimal solution to (33). 

Problem 25:  Prove theorem 2. 

Problem 26:  Continuation of problem 17. 

How do the conditions in theorem 2 change in the model using manpower 

effectiveness? 

Problem 27:  Show that 

a) if p(u) £ p(u+l)  for all u,  then «,(t) ^ «.(t+1)  for all t, 

b) if in addition a(t) ^ a(t+l)  for all  t £ 1,  then (42) holds. 

„-._X„__ 
- —.__: :■-. .-•■•. 
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D 

Problem 28:  Concinuation of problems 15 and 18. 

Does (42) hold for this numerical example? 

Problem 29:  Continuation of problem 15. 

For what values of a(t)  is the equality solution optimal? 

We have shown conditions under vvhich {g (t)}, which solves (39), is 

non-negative and is thus optimal in (33). We now show that {g (t)} which 

satisfies (34) is optimal under more general conditijns.  This is done in 

Theorem 3:  Under assumptions (37), if in addition 

(43) p(u) > ctp(u+l) 

for all u ^ 0,  then {g (t)} which satisfies (34) is an optimal solution of 

(33) . 

Proof:  Let {g*(t)} and {v*(t)}  be optimal solutions of (33) and (35) 

respectively, and assume for some T that 

T-l 
(44) g*(T) > Max{0,[b(t)- I    p(T-j)g*(j) ]/p(0)}, 

From (44) and (38) it follows that 

00 

(45) I    v*(T+j)p(j) = aTc(a) 
j=0 

and v*(T)   =  0. 

Combining these results gives 

CO 

T 
I    v*(T+j)p(j)   = a c(a). 
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But  since     {v*(t)}     is   feasible in   (35) 

00 

I    v*(T+l+j)p(j)   S  aT+1c(a). 
j=0 

Multiplying the  first of  these two relations by     -a    and adding to the  second 

gives 

oo 

I    v*(T+j)[p(j-l) -ap(j)]  S 0. 
j=l 

The assumption of the theorem, (43) , implies that all the terms in square brackets 

are positive, which implies that since the {v*(t)} -.^e non-negative they must 

T~ 
all be zero.  However, since if (37) holds, a c(a) > 0,  (45) implies that 

v*(T) > 0 for some T.  This contradiction implies that (4A) cannot hold and 

the theorem is proved. 

Example 5:  Continuation of example 4 and problem 15. 

For the data given the optimal solution to (33) , for 1 s; t ^ 6  is 

t 1 2 3 4 5 6      1 

g+(t) 200 0 510 630 611 374 

Problem 30:  Continuation of Problem 17. 

How must the restriction (43) in theorem 3 be modified for the effective- 

ness model? Given the data in example 4 and problem 15 what values of  a(u) 

will satisfy this modified inequality? 

D 

It  is  often not  possible to determine if   the equality solution     {g   (t)} 

is non-negative.     In situations which involve relatively large decreases  in 

requirements   in  the   first   few periods  together with a  large legacy,  some  ele- 

ments  of  the  solution are often negative.     In  these  cases we must  find   some 

procedure  for  either  solving or approximating  the solution of the  infinite 

horizon problem. 
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We briefly describe three methods   for  calculating approximately optimal 

solutions to  the  infinite horizon optimization problem (33).     Each of  the  three 

methods is based on a partition of  the original infinite problem into a    T 

period  finite  problem followed by an  infinite problr-ri liiat commences  at  time 

T-i-l.     The  hope  is  that  the system will   settle aown enough so  that  the  problem 

dtarting at  time    T+l    will have a non-negative equality solution regardless 

of   the choice  of    g(t),     1 S t S T, 

The  first method  simply ignores  the decisions and constraints  for  time 

T + l    onwards.     This procedure is  quite  simple,  but  it can lead  to optimal 

programs that  save in periods 1  through    T    by presenting difficult  initial 

conditions  for  the second problem that commences at  time    T+l.     Since the 

problem that  starts at  time    T+l    is not  explicitly considered in the objective, 

there is no penalty to deter this  type of behavior. 

The second method assumes    p(u)  =  0     for    u > M,    and attempts  to provide 

a smooth transition to equilibrium by  fixing accessions at their equilibrium 

value for periods    T + l    onward.     The assumption is  that    b(t)  = b    for    t ^ T, 

and  that    g(t)   = b/^._n p(j)     for all    t  > T.     Thus  the accessions  in past 

periods and periods    T+l,T+2,...     are all known.    We mus^. determine the accessions 

in periods  1  through    T    in order  to satisfy  the lower bound requirement  in the 

first    T + M    time periods.    This leads  to a linear program with    T + M    inequality 

constraints  and    T    non-negative variables     g(t);     1 S t S T.     The dual of  this 

linear program has    T    inequality constraints and    T + M    non-negative variables 

and  is easier  to solve.     Unfortunately  this  truncation procedure hay not been 

effective  in numerical examples we have solved.    We  frequently obtain relatively 

low values  of     g(T-2),g(T-l),     etc.,  and  a relatively large value of     g(T).     In 

effect,  the program satisfies the boundary  restriction by making a last period 
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correction. This behavior is contrary to the smooth transition to equilibrium 

that the mode], was designed to produce. 

The third method for approximating solutions is based on the transient 

analysis done in Section 4.  We derive the problem to be solved in a different 

and interesting way.  Consider the dual problem (35), and fix the dual variables 

v(t)  for t ä t + 1 at values a c(a)/p(a).  The dual becomes 

Maximize   I    v(t)b(t)+^^-  £  c^bCt) 
t=l p(a) t=T+l 

T—t "^        . ^ . 
(46)    subject to   £ v(t+j)p(j) S «^(a) -  £    at+2  —^pCj), 

j=0 j-T+l-t     p'a) 

v(t) SO,    L - 1,2,.,.,T. 

Problem 31:  Show that 

a c(a) - 
r    t+i c(a)  ,,.    t c(a) 
I a    ^  —^—^ a(2)  = a —^;- 

j=T+l-t     p(a) p(a) 

T-t  . 
L    a-p(3) 

3=0 

so that the right hand side of the inequalities in (46) can be simplified.  G 

If (46) is regarded as a dual linear program the primal must be (after 

substituting the result of problem 31) , 

T   ,-T-t 
Miniraiz 

c(a)  v   t     y       J /.s 

p(a) t=l j=0 
g(t) 

(47) subject to   I    p(t-j)g(j) s b(t) 
3=1 

;(t) §0,    1 S t S T. 

Problem 32: Relate (47) to the linear program (4) in Section 4. 
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Problem 33: Let z* be the optimal value of the objective function in (47). 

Although z* is not differentiable with respect to the right-hand-side of any 

of the constraints in (47), we act as though it is and write .. . s  for the db(t) 

rate of change of the optimal value of the objective function with a change 

in the net requirements in period t. This we call the marginal cost (MC) of 

8z* requirements in period t. Show that  — . , = v*(t),  the optimal value of 
db{t) 

the t-th variable in (46). 

Problem 34:  Continuation of Problem 30. 

Write the linear program (47) for the effectiveness model. 

Problem 35:  Continuation of Problem 16. 

Suppose x(t)  is the lower bound on accessions in period t.  If z*  is 

the optimal value of (47), show 

^~=  0^(00 - I     v*(t+j)p(j). 
ÖXKZ) j=0 

Suppose    z* is  the  optimal value of  (47)  plus any  fiver! costs  (independent of 

3z* 
{g(t)}). Then calculate 8x(t)' 

Problem 36: Let s(0) = [s (0),... ,s (0) ] be the length of service distribu- 

tion at time 0. The value of s(0) affects the cost legacy and the require- 

ments  legacy.     Let     z* be the optimal value  of   (47)  plus the present value of 

3z* the cost  legacy.     Find    -r—r^rr    and  interpret  th» result. 

Problem 37:     To  smooth the flow of accessions we  can charge a premium    A    on 

all accessions  above a certain level    h.     The infinite horizon problem becomes 

OO 00 

Minimize  c(a) I    at:g(t) + X £ cxty(t) 
t=l t=l 
t 

subject to   I    p(t-j)g(j) g b(t) 
j=l 

y(t) - g(t) g -h 

y(t) g 0, g(t) £0    t = 1,2,... 
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Suppose    b(t)   = b     for     t ä T + 1.     Show that an  approximately optimal  solution 

of  the infinite problem can Vc:  obtained by solving the   finite linear program: 

T T 
'w T* t 'w P t 

Minimize       c(oi)     I    a g(t) + c(a)g + ^    I    a y(t)   + Xy 
t=l t=l 

Subject:   to £     p(t-j)g(j) 
3=1 

I     «'I       I        «UP(U) 
j=l        Lu=T+l-j 

§    b(t) 

T+l 
8(j)   +P(a)g    §    ^f 

-git)  + y(t)    ä     -h 

-8 + y 

g(t),g,y(t),y a 0 t = 1,2,...,T. 

T+l, 
a h 

l-ct 

G 

To end  this   section we  consider the problem of  maximizing a measure of 

effectiveness  subject   to  budget  constraints.     Let     b(t)     be   the net budget 

constraint at   time     t     that  is   the budget  minus   cost   legacy.     If we maximize a 

weighted sum of   future  strength,  with weight    a        /(1-a)     applied at  time    t, 

and measure  strength by  stock  level    s(t) ,     then   the problem is equivalent  to 

(48) 

is* n t 
Maximum      p(a)     £    a  g(t) 

t=l 

t 
subject   to I    c(t-j)p(t-j)g(j)  S  b(t) 

j=l 

g(t)  S   0, 

for     t g  1. 

s* 

The assumptions   for   this   problem are: 

(49) 

(i) c(j)   >  0 

(ii) p(c0   > 0 
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(iii)     I    a hit)  <  « 
t=l 

(iv)    b(t) g 0 for all  t a 1 

(v)    p(u) = 0  for  u > y. 

Problem 38: 

Rewrite (48) and (49) for the case of maximizing effective strength 

with lower bounds on the accessions. 

The following simple policies are worthy of closer examination: 

t 

(50) 

tf 

gX(t)  = 

b(t)-   I    c(t-j)p(t--j)gX(j) 
 Izl  

c(0)p(0) 

and 

(51) g+(t) max 

b(t+u) ■ 
t-1                                       .     1 

-   1    c(t+u-j)p(t+u-j)g  (j) 
.1=1 

c.(u)p(u}                              j 

The solution    (g  (t)}     exactly meets the budget  constraints but,  there 

is no guarantee  that  it will be non-negative.     The solution    ^  (t)     is non- 

negative and looks    M    periods ahead to make    g(t)     as  large as possible 

without exhausting the remaining budget in years     t,     t+l,...,t+M. 

The dual of   (48)   is 

00 

Minimize        I    v(t)b(t) 
t-1 

00 ' 

subject   to I    v(t+j) c(j)p(j)  g ct p(a), 
.1=0 

v(t)  SO, til. 
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A dual  feasible  solution  is 

(53) vX(t)  = a^(a)/7(a) 

00 

where c(a) = ), ct c(u)p(u).  The results for this problem are analogous to 
u^O 

problem (33) and (35).  They are summed up in the following: 

Theorem 4.  Under assumption (49). 

(i)  Both (48) and (52) have optimal solutions  {g*(t)}  and  {v*(t)}. 

Moreover 

CD 00 

l    v*(t)b(t) = p(cO I  atg*(t). 
t=l t=l 

(ii)  If 

b(t)    c(j-l)p(j-l) 

then    {g  (t)}    which solves   (50)   is non-negative and  optimal. 

(iii)     If    c(j)p(j)  >  ac(j+l)p(j+l)     for all    j S 0,     then     (g   (t)}    which 

solves   (51)   is   optimal. 

(iv)    Approximately optimal solutions  can be found by solving the linear 

program: 

rT-t      . T 
g(t) Maximize      ^   '     ^    a      ^    a c(j)p(j) 

c(a)   t=l       4=1 

t 
subject  to I    c(t-j)p(t-j)g(j) a b(t) 

.1=1 

g(t) so t  = 1,2 T, 
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6.     Uncertain Requirements. 

In most manpower planning situations there  Is a great deal of uncertainty 

as  to what conditions will prevail In future periods,  and different  conditions 

can affect both future manpower  requirements and  flows.     For example, a change 

in economic ronditions affects  the demand for automobiles,  and a change in this 

demand causes a change in the manpower requirements of auto manufacturers.     If 

this  this requirement decreases  it usually affects  the natural mobility of the 

labor  force.    People usually  tend  to stay longer  in a given job when adverse 

economic conditions  prevail,  and  this  change in mobility  is  reflected in the 

flow fractions,  the matrix    Q    in a cross-sectional model,  or the matrices 

P(u)       in a longitudinal model.     Since future uncertainty  is  the rule rather 

than the exception  it  is highly desirable that we develop models which take it 

into account.     In this section we present a technique for calculating "approxi- 

mately optimal" long run policies under uncertainty.    The technique is similar 

to  that presented in section 2.     Since the material in this  section is neces- 

sarily  technical the  theory  is presented in its  simplest  form.     The methods can 

be extended and embellished. 

With the Introduction of uncertainty it behooves us  to use a cross- 

sectional model.     Thus, we assume there are    N    manpower  classes  in the system, 

and    S(t)     is a random    N    vector which gives the stocks  at  time    t.    We intro- 

duce the important  concept  of  "conditions" which prevail at some time    t.     It 

is assumed that the manpower system is operating under one of    K    sets of condi- 

tions at any time.     The conditions at  time    t    are denoted by the random vari- 

able    X(t)    which  can take on values  1 through    K.     Conditions can change from 

period to period,  but clearly  it  is reasonable to assume  that the conditions 

prevailing at some  time    t    are dependent on the conditions prevailing at time 

t - 1.    We assume  the dependence  is Markovian and  let 
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(46) p£k = P[X(t+l) = k| X(t) = Ä],    i,k = 1,Z,...,K.. 

Given the condition at time zero the probability of any particular condition 

prevailing at time t  is completely determined by the  K x K matrix P 

whose  (J2.,k)-th element is Pp, • 

Given that conditions k prevail at time t,  (i.e. that X(t) = k)) 

the fractional flows are given by an N  N matrix Q. ,  the requirements by 
K. 

an N vector r ,  and the input flows in period  t+1  by F(t+l,k).  Notice 

that the subscript 0 on the input flows used in earlier chapters is dropped 

here to simplify the notation. 

In terms of random variables the stocks at some time t + 1 are given by 

(47) S(t+1) = Qx(t)S(t) + F(t+l). 

Let  R(t)  be the r.-ndom vector of requirements at time  t and let 

(48) Y(t) = Max[0,R(t)-S(t)], 

(49) Z(t) = Max[0,S(t) -R(t)]. 

Here the maximum is taken element by element in the N vectors.  The interpre- 

tation is that the i-th element of Y(t)  gives the deficit in class  i at 

time t  (requirements not met in class i) and that of  Z(t)  gives the sur- 

plus (requirements exceeded in class  i) .  Clearly not both can be positive. 

Costs are imposed at time  t  on (a) the stocks, (b) the deficits, (c) the 

surpluses, and (d) the input flows.  Future costs are discounted at rate a. 

The. problem is to find input flows in period 1 in order to minimize the total 

expected future costs, given the starting stocks S(0) = s and starting condi- 

tions  X(0) = k.  This problem is extremexy difficult to solve exactly.  Since 

the cross-sectional model is at best an approximation to a real manpower system 

it seems reasonable to search for an approximation to this optimal solution. 
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one which is easy to calculate. This is done in two stages.  The Jirst stage 

is the formul. tion of an infinite horizon linear program whose optimal solution 

gives a lower bound for the problem stated above. The second stage uses tech- 

niques described in section 2 to reduce this to a small finite linear program 

which is easily solved and from which can be extracted a reasonable and good 

operating policy. 

Equation (46) gives the 1-step '"forward" probabilities for the changes 

in conditions.  In stage 1 we need the 1-step "backward" probabilities, 

Prx(t) = k | X(t+1) = £].  Let \(  )  = P[X(t)=k], which is easily found from 

P and the starting condition.  An application of Bayes' Law gives 

(50) P[X(t) = k | X(t+1) = 1]  =  T7k(t)pkJl/TT£(t+l) , 

where if both numerator and denominator are zero the quotient is taken to be 

zero. 

Now define 

S(t,k) = E[S(t) | X(t) = k] 

and F(t+l,k) = E[F(t+l) | X(t)= k]. 

Using these with (50), (47) and conditional expectations, 

K 
S(t+l,k) = l    [TrÄ(t)p /IT (t+1)] [QÄS(t,Ä)+F(t+l,£)]. 

Ä=l 

To simplify this expression let 

s(t,k) = irk(t)S(t,k) 

and f(t+l,k) = Trk(t)F(t+l,k:i. 

Then we have 

K K 
(51) s(t+l,k) = I    pJlkQ£s(t,£)+ I    p)lkf(t+l,£). 

=:X i Li 
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Any sequence of stocks and flows must satisfy this equation at each time 

point. 

Now let 

and 

Y(t,k) = E[Y(t) | X(t) = k], 

Z(t,k) = E[Z(t) | X(t) = k] 

yCt.k) = Trk(t)Y(t,k), 

z(t,k) = 7rk(t)Z(t,k) 

Combining (A8) and (49) we see that 

Y(t) -Z(t) = K(t) -SCt), 

and  by  using  conditional   expectation and  the above definitions, 

(52) s(t,£)+y(t,£) -z(t,£)   = TT£(t)r£. 

Any sequence of stocks, surpluses, deficits and requirements must satisfy this 

equation for each  t. 

A policy is a rule which specifies for all  t ^ 0 a value of the input 

flows, surpluses and deficits, given the stocks and conditions.  Thus, a feasible 

policy must satisfy both (51) and (52) .  In order to discuss ootimal policies 

we need to introduce costs. 

Let  a ,  b ,  c  and d  be N vectors of single period unit costs 

for stocks, input flows, deficits and surpluses respectively, and let 

ot be the dircount factor.  Then the present value of the total expected costs 

over the infiäite horizon is 

K 
(53) I    a1     I     [a s(t,JO + b f(t,£) + c z(t,JO+d y(t,£)], 

t=l   Z=l 

Our stage 1 problem is now complete:  Find  N vectors f(t,)l),  z(t,£)  and 

y(t,£),  t ^ 1, i.  =  1,2,...,K,  which are non-negative, satisfy (51) and (52), 

and minimize (53). 

X" 
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Problem 31:  Show that the solution to the infinite horizon linear program 

above gives a lower bound on the minimum expected cost of the original problem. 

To do this show that a feasible policy in the original problem must satisfy 

constraints in addition to those given in (51) and (52) and non-negativity. 
a 

This stage 1 problem is itself very difficult to solve, and we proceed 

to stage 2 to approximate it with a finite linear program.  Following the ideas 

presented in section 2, define 

CD 00 

s    =    l    ats(t,Ä), .  = I    at:f(t,£), 
^  t=l ^  t=l 

00 00 

t=l t=l 

U'jing these definitions the objective function in (53) becomes 

After multiplication by a    and summing over t,  (51) becomes 

(55) sk = I    ap,kQks£+ £ P£kf, + a I    P£ks(0,£). 
1=1 Z=l i=l 

Given the starting conditions are s(0) = s  and X(0) = k,  then 

s(0,!i)   =0  if  H t k, 

= s  if  S, = k. 

After multiplication by a  and summing over t,  (52) becomes 

(56) s£ + y£-z£ = Va)v 

where 

CO 

(57) 7. (a)  =    I    a^/t). 
^ t=l        *■ 

A 
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Our stage 2 problem is:  Find N vectors  f ,  y  and z   ,     £ = 1,2,...,K 

which are non-negatr.ve, satisfy (55) and (56), and minimize (5A).  The variables 

s  are determined by (55). 

In order to simplify and analyze the stage 2 program further we introduce 

the following notation: 

PllQi  P21Q2 

P1KQ1  P2HQ2 

PK1QK 

PKKQK 

an NK by NK matrix, and 

r [■ir1(a)r1,. . . ,uK(a)rK], 

s(0) = [s(0,l),...,s(0,K)], 

is 1' 
• .sv J, 

all NK column vectors. 

[fl'- ..fK], 

[y,.. ..yK], 

[zi" 
..zK], 

all NK row vectors, 

a =  (a1,. . •'V' 
b =   (b;L,.. .,bK), 

c =   (c1,. . •,cK), 

d =   ^v.. •'V' 
Also  let 

_j_^ ■ ■  ■  -  ■ ■  ■ : ^ --^ : ^ -,     -.-A ■ :.-   ■    .     -■•■■■■ '-- - .   ■ ■■  ..■   _: , _^ —  
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H = 

Pll1 

v 

PKI
1 

PKK
1 

an NK by NK matrix, where I represents an N by N identity matrix. 

The stage 2 linear program can now be written as 

Minimize  as+bf+cz+dy 

(58) subject to  7 =  aQ7+HF +ciHs'(O) , 

-.■*W /Srf 

s + y - z = r, 

s ^ 0 

y ^ 0 

z ^ 0 

f ^ 0. 

The first set of constraints in (58) can be solved for s,  givim: 

s = Q(a)H[f + as(0)], 

where Q(a) = (I-otQ)"1. 

Since Q(a) is non-negative,  s  is non-negative and (58) can be 

simplified to give: 

Minimize  [aQ(a)H + b]f+cz + dy 

(59) subject to  Q(a)HF + y-z = r - aQ(a)Hs(0) , 

y^G,  z^O,  g^O. 

The lim.ar program (59) has 3NK variables and NK constraints.  From the 

basic flow data {Q, }. the requirement data (r. }, the "condition" transition 

probabilities P,  the starting conditions X(0) and s(0),  and the discount 

 A A. u     . -., ,■,, •.;, • —„—^—, ^ , ^ _. 
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factor a,  these constraints can be written out.  The coefficients of the 

objective function are determined by this data and the data on costs, namely 

a,  b,  c,  and  d. 

Suppose that   (59)   is  solved and  let     (f*,y*,z*)     be  the optimal value 

of  the variables.     The problem remains of  how  to  obtain  P   "rolicy" from this 

solution;   given  the conditions at  time     t,     what  input   fl-ws  should be made 

in period    t+ 1?    We now show how to obtain a stationary policy from    f*.     This 

is a policy which  gives  the   input  flows   in  the next  period  for each current 

condition.     These  flows  depend only on  the  condition  and not on  the actual  period. 

Recall  that     f    is  the  column vector     [f   ,f   ,...,f   ],    where 
X  /      K. 

00 

r    t fu ~  L    -i   a  fCt.k),  and  f(t,k) = IT (t-l)F(t ,k) .  Our stationary policy assump- 

tion implies  F(t,k) = F ,  independent of  t.  F  is an  N vector which 

gives the input flows in the next period if the current conditions are k. 

Using these definitions we obt.'n 

and from (57) , 

fk = I    a\(t-l) Fk, 
t=l 

fk = 0'(\(0)+\(a))Fk. 

Thus our stationary policy becomes 

(50) F* = [Trk(0)+Vk(a)]~
1 • f*.    k=l,2,...,K. 

Problem 32:  From Markov chain theory the vector TT(t)  with k-th element 

IT (t)  is given by ir(t) = viO)?1.     Show that 
iC 

u(a)   = iT(0)[I-aP]~1-TT(0). 

a 

am^^mtmmimm fima^^T&^^^aaa^^ .   :  
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We end  this  section with a simple numerical example to  illustrate the 

use of the linear program (59).     Suppose there are two manpower classes and 

two possible conditions     (N=K=2),    with  fractional flow matrices 

Ql = 

.8        0 

.1       .8 ^2  = 

,6        0 

,2       .6 

The condition transition matrix is 

P = 
.5  .S"1 

.4   .6 

The starting conditions are, 

s(0) = [100,100],  and  X(0) = 1. 

The requirements are 

The costs are 

r1 = [105,90]  and  r2 = [100,80], 

a1 = b1 = (1,1), a2 = b2 = (2,2), 

c1 = (20,30), c2 = (15,23), 

d1 = (52,10), d2 = (2,34) 

Finally, the discount factor a = 0.9. 

Using this data the reader can check that 

Q = 

0.40 0.24 

0.05 0.40 0.08 

0.40 0.36 

0.05 0.04 0.12 

0.24 

0.36 
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H = 

0.5 0.4 

0.5 0.4 

0.5 0.6 

0.5 0.6 

Q(oOH 

1.257 

0.428 

1.409 

0.537 

1.257 

1.409 

1.127 

0.429 

1.488 

0.542 

1.127 

1.488 

and 

aQ(a)H + b = (6.57,  5.07,  7.61,  6.10), 

rw     Orf _ 

r-aQ(a)Hs(0) = [312.7, 213.3, 367.7, 220.5] 

These numbers are used in a linear program (59) with four constraints and 

12 variables.  From the optimal solution of this program we obtain 

f* = [180, 0, 76, 72], 

and by using (60) we obtain the stationary policy 

(i) If in condition 1 at t,  input flows in period t + 1 are  [40, 0], 

(ii)  If in condition 2 at t,  input flows in period t + 1 are  [17, 16] 

—  ~ 
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7. Notes and Comments. 

This chapter presents some applications of optimization procedures 

to manpower flow models. As stated in its introduction, there are very many 

ways to use optimization procedures in manpower modelling, so one cannot present 

a single proper or correct procedure. The value of any approach will always 

depend on the context of the manpower system and the objectives 01! the planners 

and policy makers. 

Several other books contain articles on optimization in manpower systems. 

These include Bartholomew [1973], Charnes, Cooper, and Neihaus [1972], Smith 

[1971], and Bartholomew and Morris [1971]. 

Section 2 is based on Grinold [1974a], and Grinold and Stanford [1974]. 

Section 3 presents a novel approach to system design.  Section 4 is based on 

Grinold and Stanford [1974] and Grinold and Hopkins [1973]. Section 5 is 

drawn from Grinold, Marshall, and Oliver [1973].  Finally section 6 is derived 

from Grinold [1973], [1974b] and [1974c]. 
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